N.I. come a			
Name	Date	 	Olone
	race	 <u></u>	Lass

Chemical Formulas and Chemical Compounds

SECTION 1

SHORT ANSWER	Answer the following questions	s in the space provided.
	a a sala a a a a a a a a a a a a a a a a	on the space provided.

- 1. _____ In a Stock system name such as iron(III) sulfate, the Roman numeral tells us
 - (a) how many atoms of Fe are in one formula unit.
 - (b) how many sulfate ions can be attached to the iron atom.
 - (c) the charge on each Fe ion.
 - (d) the total positive charge of the formula unit.
- 2. _____ Changing a subscript in a correctly written chemical formula
 - (a) changes the number of moles represented by the formula.
 - (b) changes the charges on the other ions in the compound.
 - (c) changes the formula so that it no longer represents the compound it previously represented.
 - (d) has no effect on the formula

	(a) has no effect on the formula.
3.	The explosive TNT has the molecular formula $C_7H_5(NO_2)_3$.
	a. How many elements make up this compound?
	b. How many oxygen atoms are present in one molecule of $C_7H_5(NO_2)_3$?
	e. How many atoms in total are present in one molecule of C ₇ H ₅ (NO ₂) ₃ :
	d. How many atoms are present in a sample of 2.0×10^{23} molecules of $C_7H_5(NO_2)_3$?
4.	How many atoms are present in each of these formula units?
	a. Ca(HCO ₃) ₂
	b. C ₁₂ H ₂₂ O ₁₁
	c. Fe(ClO ₂) ₃

a. What is the formula for the compound dinitrogen pentoxide?

- **b.** What is the Stock system name for the compound FeO?
 - c. What is the formula for sulfurous acid?
 - **d.** What is the name for the acid H_3PO_4 ?

- **d.** Fe(ClO₃)₂

	e		Class
EC	FION 1 continued		
6.	on the position of the elements in False, specify the nature of the en	the periodic table. Label rror.	e type of bond favored partially depends each of these claims as True or False; if
	a. Covalently bonded binary mol	lecular compounds are typ	pically composed of nonmetals.
		composed of metals and n	onmetals, typically from opposite sides o
-			
7.	names and formulas for polyator	mic ions and acids.	d name will end in the suffix -ic or -ous.
4	b. Derive a generalization for do or not.	etermining whether an ac	id name will begin with the prefix hydro-
		etermining whether an ac	id name will begin with the prefix hydro-
8	or not. Fill in the blanks in the table be	elow.	id name will begin with the prefix hydro-
8	or not. Fill in the blanks in the table be Compound name		id name will begin with the prefix hydro-
8	or not. Fill in the blanks in the table be	elow.	id name will begin with the prefix hydro-
8	or not. Fill in the blanks in the table be Compound name Aluminum sulfide	elow.	id name will begin with the prefix hydro-
8	or not. Fill in the blanks in the table be Compound name Aluminum sulfide	elow. Formula	id name will begin with the prefix hydro-

	1 - 1 - 2 - 1 - 1			

Name	Date Class	
	_ 110	

Chemical Formulas and Chemical Compounds

SECTION 2

SHORT ANSWER Answer the following questions in the space provided.

1	. Assign the oxidation number to the specified element in each of the following examples:
	$-$ a. S in H_2SO_3
	b. S in MgSO ₄
	c. S in K ₂ S
	d. Cu in Cu ₂ S
	e. Cr in Na ₂ CrO ₄
	- f. N in HNO ₃
	g. C in (HCO ₃)
	h. N in $(NH_4)^+$
2.	a. What is the formula for the compound sulfur(II) chloride?
	b. What is the Stock system name for NO ₂ ?
3.	a. Use electronegativity values to determine the one element that always has a negative oxidation number when it appears in any binary compound.
	b. What is the oxidation number and formula for the element described in part a when it exists as a pure element?
4.	Tin has possible oxidation numbers of $+2$ and $+4$ and forms two known oxides. One of them has the formula SnO_2 .
	a. Give the Stock system name for SnO ₂ .
	b. Give the formula for the other oxide of tin.
5.	Scientists think that two separate reactions contribute to the depletion of the ozone, O_3 , layer. The first reaction involves oxides of nitrogen. The second involves free chlorine atoms. The equations that represent the reactions follow. When a compound is not stated as a formula, write the correct formula in the blank beside its name.
	a. (nitrogen monoxide) + $O_3 \rightarrow$ (nitrogen dioxide) + O_2

	A Company of the Comp	D 4-	Class	
Name		Date	Ciass	

SECTION 2 continued

- **b.** Cl + $O_3 \rightarrow$ ____ (chlorine monoxide) + O_2
- 6. Consider the covalent compound dinitrogen trioxide when answering the following:

a. What is the formula for dinitrogen trioxide?

b. What is the oxidation number assigned to each nitrogen atom in this compound? Explain your answer.

_____ c. Give the Stock name for dinitrogen trioxide.

7. The oxidation numbers assigned to the atoms in some organic compounds have unexpected values. Assign oxidation numbers to each atom in the following compounds: (Note: Some oxidation numbers may not be whole numbers.)

a. CO₂

b. CH₄ (methane)

c. $C_6H_{12}O_6$ (glucose)

d. C₃H₈ (propane gas)

8. Assign oxidation numbers to each element in the compounds found in the following situations:

a. Rust, Fe₂O₃, forms on an old nail.

b. Nitrogen dioxide, NO₂, pollutes the air as a component of smog.

c. Chromium dioxide, CrO₂, is used to make recording tapes.

Name	Date	Class
TOWARD	Date	Class

Chemical Formulas and Chemical Compounds

SECTION 3	
SHORT ANSWER Answer	the following questions in the space provided.
1. Label each of the followin	g statements as True or False:
	a. If the formula mass of one molecule is x amu, the molar mass is x g/mol.
	b. Samples of equal numbers of moles of two different chemicals must have equal masses as well.
	c. Samples of equal numbers of moles of two different molecular compounds must have equal numbers of molecules as well.
2. How many moles of each	element are present in a 10.0 mol sample of Ca(NO ₃) ₂ ?
PROBLEMS Write the ans provided.	wer on the line to the left. Show all your work in the space
3. Consider a sample of 10.0	g of the gaseous hydrocarbon C ₃ H ₄ to answer the following questions.
	a. How many moles are present in this sample?
	b. How many molecules are present in the C_3H_4 sample?

c. How many carbon atoms are present in this sample?

Name			Date	C1	ass
SECT	ION 4 continued				
		b. The com	npound has the fo	rmula CuSO ₄ • xH ₂ O	. Determine the
		of x.	-		· · · · · · · · · · · · · · · · · · ·
	•				
					· .
4	. What might be the p	perpass of the sac	and hasting's		
`	. What hight be the p	ourpose of the sec	ond heading:		
146					
-		- THAT STANDARD			
-					
5. (Gas X is found to be 2	4.0% carbon and	76.0% fluorine b	v/ mace	
		a. Determin		•	
			ne the emphreur	official of gas A.	
		. Cu			
•		b. Given th molecula	at the molar mas ar formula.	s of gas X is 200.04	g/mol, determin
				-	
6. A	compound is found t	o contain 43.2% o	copper, 24.1% ch	lorine, and 32.7% ox	ygen by mass.
_		a. Determin	ne its empirical fo	ormula.	
	•				
b	. What is the correct S	Stock system nam	e of the compour	id in part a ?	
			*	ı.	

٠	 Security of		r	production of the second	

Name	Date	Class	
	D 440		

Chemical Formulas and Chemical Compounds

MIXED REVIEW

SHORT ANSWER Answer the following questions in the space provided.

1.	Write formulas for the following compounds:
	a. copper(II) carbonate
	b. sodium sulfite
	c. ammonium phosphate
	d. tin(IV) sulfide
	e. nitrous acid
2.	Write the Stock system names for the following compounds:
	a. Mg(ClO ₄) ₂
	b. Fe(NO ₃) ₂
	c. Fe(NO ₂) ₃
	d. CoO
	e. dinitrogen pentoxide
₹.	a. How many atoms are represented by the formula Ca(HSO ₄) ₂ ?
•	b. How many moles of oxygen atoms are in a 0.50 mol sample of this compound?
	c. Assign the oxidation number to sulfur in the HSO_4^- anion.
4.	Assign the oxidation number to the element specified in each of the following:
	a. hydrogen in H_2O_2
	b. hydrogen in MgH ₂
	\mathbf{c} . sulfur in S_8
	d. carbon in $(CO_3)^{2-}$
	e. chromium in Na ₂ Cr ₂ O ₇
	f. nitrogen in NO ₂

MODERN CHEMISTRY

Name	Date	A STATE OF THE STA
MIXED REVIEW cor	and a company of the	Class
PROBLEMS Write space provided.	the answer on the line to the left.	. Show all your work in the
5.	Following are samples of fou order of increasing mass, from	r different compounds. Arrange them in memory manages are smallest to largest.
	a. 25 g of oxygen gasb. 1.00 mol of H₂O	c. 3×10^{23} molecules of C_2H_6 d. 2×10^{23} molecules of $C_2H_6O_2$
6	a. What is the formula for so	dium hydroxide?
	b. What is the formula mass of	
	c. What is the mass in grams	of 0.25 mol of sodium hydroxide?
7	What is the percentage compos whole number?	ition of ethane gas, C ₂ H ₆ , to the nearest
8.	Ribose is an important sugar (pa 150.15 g/mol. If its empirical fo formula?	art of RNA), with a molar mass of rmula is CH_2O , what is its molecular

Nan	ne	D	ate	Class	
MI	KED REVIEW continue	d			
9.	Butane gas, C ₄ H ₁₀ , is of	ten used as a fuel.			
		a. What is the mass in	n grams of 3.00	mol of butane?	,
					÷
	· .			·	
		b. How many molecu	les are present i	n that 3.00 mol sample?	•
÷					
	Market Proprietation and Association and Assoc	c. What is the empiric	cal formula of tl	ne gas?	
10.		molar mass is 128.18	g/mol and it cor	at is often used in mothlatains 93.75% carbon an armula of napthalene fro	d 6.25%
			•		
11.	Nicotine has the formula oxygen, producing the f	a $C_xH_yN_z$. To determine its ollowing results:	composition, a	sample is burned in exc	ess
	1.0 mol of CO ₂ 0.70 mol of H ₂ O 0.20 mol of NO ₂				
	Assume that all the atom	ns in nicotine are present a	s products.		
		a. Determine the num of this combustion		carbon present in the pr	roducts
				,	

.

IIXED REVIEW continued	
	h Determine the number of an analysis
	b. Determine the number of moles of hydrogen present in the combustion products.
	the combustion products,
	1
	•
	c. Determine the number of moles of nitrogen present in the
	combustion products.
	1
	d. Determine the empirical formula of nicotine based on your
	calculations.
	e. In a separate experiment, the molar mass of nicotine is found to
	somewhere between 150 and 180 g/mol. Calculate the molar mass of nicoting to the page 150 and 180 g/mol.
	of nicotine to the nearest gram.
•	
When McCO (2):	
When $MgCO_3(s)$ is strongly	heated, it produces solid MgO as gaseous CO ₂ is driven off.
When $MgCO_3(s)$ is strongly	wheated, it produces solid MgO as gaseous CO ₂ is driven off.
When $MgCO_3(s)$ is strongly	a. What is the percentage loss in mass as this
When $MgCO_3(s)$ is strongly	
When $\mathrm{MgCO}_3(s)$ is strongly	a. What is the percentage loss in mass as this
When $MgCO_3(s)$ is strongly	a. What is the percentage loss in mass as this
When $\mathrm{MgCO}_3(s)$ is strongly	a. What is the percentage loss in mass as this
When $\mathrm{MgCO}_3(s)$ is strongly	a. What is the percentage loss in mass as this
	a. What is the percentage loss in mass as this reaction occurs?
	a. What is the percentage loss in mass as this reaction occurs?
	a. What is the percentage loss in mass as this reaction occurs?
	a. What is the percentage loss in mass as this reaction occurs?
	a. What is the percentage loss in mass as this reaction occurs?
	a. What is the percentage loss in mass as this reaction occurs?
	a. What is the percentage loss in mass as this reaction occurs? b. Assign the oxidation number to each atom in MgCC

the second of th

N.