| N.I. come a | | | | |-------------|------|-------------|-------| | Name | Date |
 | Olone | | | race |
<u></u> | Lass | ## Chemical Formulas and Chemical Compounds #### SECTION 1 | SHORT ANSWER | Answer the following questions | s in the space provided. | |--------------|--|--------------------------| | | a a sala a a a a a a a a a a a a a a a a | on the space provided. | - 1. _____ In a Stock system name such as iron(III) sulfate, the Roman numeral tells us - (a) how many atoms of Fe are in one formula unit. - (b) how many sulfate ions can be attached to the iron atom. - (c) the charge on each Fe ion. - (d) the total positive charge of the formula unit. - 2. _____ Changing a subscript in a correctly written chemical formula - (a) changes the number of moles represented by the formula. - (b) changes the charges on the other ions in the compound. - (c) changes the formula so that it no longer represents the compound it previously represented. - (d) has no effect on the formula | | (a) has no effect on the formula. | |----|---| | 3. | The explosive TNT has the molecular formula $C_7H_5(NO_2)_3$. | | | a. How many elements make up this compound? | | | b. How many oxygen atoms are present in one molecule of $C_7H_5(NO_2)_3$? | | | e. How many atoms in total are present in one molecule of C ₇ H ₅ (NO ₂) ₃ : | | | d. How many atoms are present in a sample of 2.0×10^{23} molecules of $C_7H_5(NO_2)_3$? | | 4. | How many atoms are present in each of these formula units? | | | a. Ca(HCO ₃) ₂ | | | b. C ₁₂ H ₂₂ O ₁₁ | | | c. Fe(ClO ₂) ₃ | a. What is the formula for the compound dinitrogen pentoxide? - **b.** What is the Stock system name for the compound FeO? - c. What is the formula for sulfurous acid? - **d.** What is the name for the acid H_3PO_4 ? - **d.** Fe(ClO₃)₂ | | e | | Class | |----|--|------------------------------------|---| | EC | FION 1 continued | | | | 6. | on the position of the elements in False, specify the nature of the en | the periodic table. Label
rror. | e type of bond favored partially depends
each of these claims as True or False; if | | | a. Covalently bonded binary mol | lecular compounds are typ | pically composed of nonmetals. | | | | composed of metals and n | onmetals, typically from opposite sides o | | - | | | | | 7. | names and formulas for polyator | mic ions and acids. | d name will end in the suffix -ic or -ous. | | | | | | | | | | | | 4 | b. Derive a generalization for do or not. | etermining whether an ac | id name will begin with the prefix hydro- | | | | etermining whether an ac | id name will begin with the prefix hydro- | | 8 | or not. Fill in the blanks in the table be | elow. | id name will begin with the prefix hydro- | | 8 | or not. Fill in the blanks in the table be Compound name | | id name will begin with the prefix hydro- | | 8 | or not. Fill in the blanks in the table be | elow. | id name will begin with the prefix hydro- | | 8 | or not. Fill in the blanks in the table be Compound name Aluminum sulfide | elow. | id name will begin with the prefix hydro- | | 8 | or not. Fill in the blanks in the table be Compound name Aluminum sulfide | elow.
Formula | id name will begin with the prefix hydro- | | | 1 - 1 - 2 - 1 - 1 | | | | |--|-------------------|--|--|--| Name | Date Class | | |------|------------|--| | | _ 110 | | # Chemical Formulas and Chemical Compounds ### SECTION 2 **SHORT ANSWER** Answer the following questions in the space provided. | 1 | . Assign the oxidation number to the specified element in each of the following examples: | |----|---| | | $-$ a. S in H_2SO_3 | | | b. S in MgSO ₄ | | | c. S in K ₂ S | | | d. Cu in Cu ₂ S | | | e. Cr in Na ₂ CrO ₄ | | | - f. N in HNO ₃ | | | g. C in (HCO ₃) | | | h. N in $(NH_4)^+$ | | 2. | a. What is the formula for the compound sulfur(II) chloride? | | | b. What is the Stock system name for NO ₂ ? | | 3. | a. Use electronegativity values to determine the one element that always has a negative oxidation number when it appears in any binary compound. | | | b. What is the oxidation number and formula for the element described in part a when it exists as a pure element? | | 4. | Tin has possible oxidation numbers of $+2$ and $+4$ and forms two known oxides. One of them has the formula SnO_2 . | | | a. Give the Stock system name for SnO ₂ . | | | b. Give the formula for the other oxide of tin. | | 5. | Scientists think that two separate reactions contribute to the depletion of the ozone, O_3 , layer. The first reaction involves oxides of nitrogen. The second involves free chlorine atoms. The equations that represent the reactions follow. When a compound is not stated as a formula, write the correct formula in the blank beside its name. | | | a. (nitrogen monoxide) + $O_3 \rightarrow$ (nitrogen dioxide) + O_2 | | | A Company of the Comp | D 4- | Class | | |------|--|------|-------|--| | Name | | Date | Ciass | | #### **SECTION 2** continued - **b.** Cl + $O_3 \rightarrow$ ____ (chlorine monoxide) + O_2 - 6. Consider the covalent compound dinitrogen trioxide when answering the following: a. What is the formula for dinitrogen trioxide? **b.** What is the oxidation number assigned to each nitrogen atom in this compound? Explain your answer. _____ c. Give the Stock name for dinitrogen trioxide. **7.** The oxidation numbers assigned to the atoms in some organic compounds have unexpected values. Assign oxidation numbers to each atom in the following compounds: (Note: Some oxidation numbers may not be whole numbers.) a. CO₂ **b.** CH₄ (methane) c. $C_6H_{12}O_6$ (glucose) d. C₃H₈ (propane gas) 8. Assign oxidation numbers to each element in the compounds found in the following situations: a. Rust, Fe₂O₃, forms on an old nail. b. Nitrogen dioxide, NO₂, pollutes the air as a component of smog. **c.** Chromium dioxide, CrO₂, is used to make recording tapes. | Name | Date | Class | |--------|------|-------| | TOWARD | Date | Class | ## Chemical Formulas and Chemical Compounds | SECTION 3 | | |-------------------------------------|---| | SHORT ANSWER Answer | the following questions in the space provided. | | 1. Label each of the followin | g statements as True or False: | | | a. If the formula mass of one molecule is x amu, the molar mass is x g/mol. | | | b. Samples of equal numbers of moles of two different chemicals must have equal masses as well. | | | c. Samples of equal numbers of moles of two different molecular compounds must have equal numbers of molecules as well. | | 2. How many moles of each | element are present in a 10.0 mol sample of Ca(NO ₃) ₂ ? | | PROBLEMS Write the ans provided. | wer on the line to the left. Show all your work in the space | | 3. Consider a sample of 10.0 | g of the gaseous hydrocarbon C ₃ H ₄ to answer the following questions. | | | a. How many moles are present in this sample? | | | | | | | | | b. How many molecules are present in the C_3H_4 sample? | | | | | | | c. How many carbon atoms are present in this sample? | Name | | | Date | C1 | ass | |-------------|-------------------------|----------------------|---------------------------------|---|---------------------------------------| | SECT | ION 4 continued | | | | | | | | b. The com | npound has the fo | rmula CuSO ₄ • xH ₂ O | . Determine the | | | | of x. | - | | · · · · · · · · · · · · · · · · · · · | | | • | | | | | | | | | | | · . | | 4 | . What might be the p | perpass of the sac | and hasting's | | | | ` | . What hight be the p | ourpose of the sec | ond heading: | | | | 146 | | | | | | | - | | - THAT STANDARD | | | | | - | | | | | | | 5. (| Gas X is found to be 2 | 4.0% carbon and | 76.0% fluorine b | v/ mace | | | | | a. Determin | | • | | | | | | ne the emphreur | official of gas A. | | | | | | | | | | | | | | | | | | | . Cu | | | | | • | | b. Given th molecula | at the molar mas
ar formula. | s of gas X is 200.04 | g/mol, determin | - | | | 6. A | compound is found t | o contain 43.2% o | copper, 24.1% ch | lorine, and 32.7% ox | ygen by mass. | | _ | | a. Determin | ne its empirical fo | ormula. | | | | | | | | | | | | | | | | | | • | | | | | | b | . What is the correct S | Stock system nam | e of the compour | id in part a ? | | | | | | * | ı. | | | ٠ |
Security of | | r | production of the second | | |---|-----------------|--|---|--------------------------|--| Name | Date | Class | | |------|-------|-------|--| | | D 440 | | | ## Chemical Formulas and Chemical Compounds ### MIXED REVIEW **SHORT ANSWER** Answer the following questions in the space provided. | 1. | Write formulas for the following compounds: | |----|---| | | a. copper(II) carbonate | | | b. sodium sulfite | | | c. ammonium phosphate | | | d. tin(IV) sulfide | | | e. nitrous acid | | 2. | Write the Stock system names for the following compounds: | | | a. Mg(ClO ₄) ₂ | | | b. Fe(NO ₃) ₂ | | | c. Fe(NO ₂) ₃ | | | d. CoO | | | e. dinitrogen pentoxide | | ₹. | a. How many atoms are represented by the formula Ca(HSO ₄) ₂ ? | | • | b. How many moles of oxygen atoms are in a 0.50 mol sample of this compound? | | | c. Assign the oxidation number to sulfur in the HSO_4^- anion. | | 4. | Assign the oxidation number to the element specified in each of the following: | | | a. hydrogen in H_2O_2 | | | b. hydrogen in MgH ₂ | | | \mathbf{c} . sulfur in S_8 | | | d. carbon in $(CO_3)^{2-}$ | | | | | | e. chromium in Na ₂ Cr ₂ O ₇ | | | f. nitrogen in NO ₂ | MODERN CHEMISTRY | Name | Date | A STATE OF THE STA | |---------------------------------------|---|--| | MIXED REVIEW cor | and a company of the | Class | | PROBLEMS Write space provided. | the answer on the line to the left. | . Show all your work in the | | 5. | Following are samples of fou order of increasing mass, from | r different compounds. Arrange them in memory manages are smallest to largest. | | | a. 25 g of oxygen gasb. 1.00 mol of H₂O | c. 3×10^{23} molecules of C_2H_6
d. 2×10^{23} molecules of $C_2H_6O_2$ | | | | | | 6 | a. What is the formula for so | dium hydroxide? | | | b. What is the formula mass of | | | | | | | | c. What is the mass in grams | of 0.25 mol of sodium hydroxide? | | | | | | 7 | What is the percentage compos whole number? | ition of ethane gas, C ₂ H ₆ , to the nearest | | | | | | | | | | 8. | Ribose is an important sugar (pa 150.15 g/mol. If its empirical fo formula? | art of RNA), with a molar mass of rmula is CH_2O , what is its molecular | | Nan | ne | D | ate | Class | | |-----|--|--|-------------------|---|---------| | MI | KED REVIEW continue | d | | | | | 9. | Butane gas, C ₄ H ₁₀ , is of | ten used as a fuel. | | | | | | | a. What is the mass in | n grams of 3.00 | mol of butane? | , | | | | | | | ÷ | | | · . | | | · | | | | | b. How many molecu | les are present i | n that 3.00 mol sample? | • | | ÷ | | | | | | | | | | | | | | | Market Proprietation and Association Assoc | c. What is the empiric | cal formula of tl | ne gas? | | | | | | | | | | | | | | | | | 10. | | molar mass is 128.18 | g/mol and it cor | at is often used in mothlatains 93.75% carbon an armula of napthalene fro | d 6.25% | | | | | | | | | | | | | | | | | | | • | | | | 11. | Nicotine has the formula oxygen, producing the f | a $C_xH_yN_z$. To determine its ollowing results: | composition, a | sample is burned in exc | ess | | | 1.0 mol of CO ₂
0.70 mol of H ₂ O
0.20 mol of NO ₂ | | | | | | | Assume that all the atom | ns in nicotine are present a | s products. | | | | | | a. Determine the num of this combustion | | carbon present in the pr | roducts | | | | | | , | | . | IIXED REVIEW continued | | |---------------------------------------|--| | | | | | h Determine the number of an analysis | | | b. Determine the number of moles of hydrogen present in the combustion products. | | | the combustion products, | | | | | | 1 | | | • | | | | | | c. Determine the number of moles of nitrogen present in the | | | combustion products. | | | 1 | | | | | | | | | | | | | | | d. Determine the empirical formula of nicotine based on your | | | calculations. | | | | | | | | | | | | | | | | | | e. In a separate experiment, the molar mass of nicotine is found to | | | somewhere between 150 and 180 g/mol. Calculate the molar mass of nicoting to the page 150 and 180 g/mol. | | | of nicotine to the nearest gram. | | | | | • | | | | | | | | | | | | When McCO (2): | | | When $MgCO_3(s)$ is strongly | heated, it produces solid MgO as gaseous CO ₂ is driven off. | | When $MgCO_3(s)$ is strongly | wheated, it produces solid MgO as gaseous CO ₂ is driven off. | | When $MgCO_3(s)$ is strongly | a. What is the percentage loss in mass as this | | When $MgCO_3(s)$ is strongly | | | When $\mathrm{MgCO}_3(s)$ is strongly | a. What is the percentage loss in mass as this | | When $MgCO_3(s)$ is strongly | a. What is the percentage loss in mass as this | | When $\mathrm{MgCO}_3(s)$ is strongly | a. What is the percentage loss in mass as this | | When $\mathrm{MgCO}_3(s)$ is strongly | a. What is the percentage loss in mass as this | | | a. What is the percentage loss in mass as this reaction occurs? | | | a. What is the percentage loss in mass as this reaction occurs? | | | a. What is the percentage loss in mass as this reaction occurs? | | | a. What is the percentage loss in mass as this reaction occurs? | | | a. What is the percentage loss in mass as this reaction occurs? | | | a. What is the percentage loss in mass as this reaction occurs? | | | a. What is the percentage loss in mass as this reaction occurs? b. Assign the oxidation number to each atom in MgCC | the second of th N.