Gases

SECTION 1

SHORT ANSWER Answer the following questions in the space provided.

- 1. Pressure = $\frac{force}{surface\ area}$. For a constant force, when the surface area is tripled the pressure is
 - (a) doubled.
 - (b) a third as much.
 - (c) tripled.
 - (d) unchanged.
- 2. Rank the following pressures in increasing order.
 - (a) 50 kPa
- (c) 76 torr
- **(b)** 2 atm
- (d) 100 N/m^2
- **3.** Explain how to calculate the partial pressure of a dry gas that is collected over water when the total pressure is atmospheric pressure.

PROBLEMS Write the answer on the line to the left. Show all your work in the space provided.

4. a. Use five to six data points from **Appendix Table A-8** in the text to sketch the curve for water vapor's partial pressure versus temperature on the graph provided below.

- **b.** Do the data points lie on a straight line?
- c. Based on your sketch, predict the approximate partial pressure for water at 11°C.

5. Convert a pressure of 0.200 atr		ving units:	:		
		ving units:	:		
		-	:		•

					3
b.					
D.	кРа			•	•
When an explosive like TNT is Suppose that gas X has a pressure of 10 atm.	detonated, a rare of 50 atm,	nixture of gases gas Y has a pre	s at high te	mperature is) atm, and ga	created. s Z has a
a. \	What is the tot	al pressure in t	his system)	
		1	mo bystem		
	•				
b. V	What is the tot	al pressure in th	is system :	in kPa?	
		*			
The height of the mercury in a basurface. At sea level, pressure av 760 mm (30. in.). In a hurricane,	arometer is diverages 1.0 atnuth the barometri	rectly proportion and the level of reading may	nal to the pof mercury	ressure on the in the baron ow as 28 in.	ne mercury's
a. C	onvert a press	ure reading of	78 in to at		
	1	- 1000mg 01 2	o m. to au	nospneres.	
			•		
					•
b. W	hat is the bard	meter reading,	in mm Hg,	, at a pressure	of 0.50 atm?
		•			-
					•
Can a barometer be used as an Explain your answer.	altimeter (a de	evice for measu	ring altitud	le above sea :	level)?
Explain your answer.			<u> </u>	. 2 · 2 00a	CVOL):

	Date Class
	CHAPTER 11 REVIEW
	Gases
2	ECTION 2
H	ORT ANSWER Answer the following questions in the space provided.
7.	State whether the pressure of a fixed mass of gas will increase, decrease, or stay the same in the following circumstances:
	a. temperature increases, volume stays the same
	b. volume increases, temperature stays the same
	c. temperature decreases, volume stays the same
	d. volume decreases, temperature stays the same
2.	Two sealed flasks, A and B, contain two different gases of equal volume at the same temperature and pressure. Assume that flask A is warmed as flask B is cooled. Will the pressure in the two flasks remain equal? If not, which flask will have the higher pressure?
_	
	BLEMS Write the answer on the line to the left. Show all your work in the space ded.
Δ	A bicycle tire is inflated to 55 lb/in. ² at 15°C. Assume that the volume of the tire does not change ppreciably once it is inflated.

- b. Because the temperature has doubled, does the pressure double to 110 psi?
- c. What will the pressure be when the temperature has doubled? Express your answer in pounds per

Jame	Date	Class	S
ECTION 2 continued			
4	A 24 L sample of a gas at fix a pressure of 3.0 atm. What changed to 16 L?	ted mass and constant pressure will the gas ex	temperature exerts xert if the volume is
5.	A common laboratory system in a syringe. The pressure in removing identical weights 50.0 mL when two weights when four more weights are	the system is changed on the plunger. The ori are present. Predict the	l by adding or iginal gas volume is
6	A sample of argon gas occu	pies a volume of 950 r	nL at 25.0°C. What
	volume will the gas occupy	at 50.0 C if the pressu	Te Temanis Constant:
7	A 500.0 mL gas sample at 3 and the temperature is incre of the gas in pascals?	STP is compressed to a assed to 35.0°C. What	is the new pressure
		· ·	•
8.	A sample of gas occupies 1 volume will the gas occupy temperature remains consta	at a pressure of 600.	ressure. What mm Hg if the
•		:	

Maradayary (day)

Name	Date	Class
: \diff	Late	Class

Gases

SECTION 3

SHORT ANSWER Answer the following questions in the space provided.

- 1. ____ The molar mass of a gas at STP is the density of that gas
 - (a) multiplied by the mass of 1 mol.
- (c) multiplied by 22.4 L.
- (b) divided by the mass of 1 mol.
- (d) divided by 22.4 L.
- **2.** For the expression $V = \frac{nRT}{P}$, which of the following will cause the volume to increase?
 - (a) increasing P
- (c) increasing T
- (b) decreasing T
- (d) decreasing n
- 3. Two sealed flasks, A and B, contain two different gases of equal volume at the same temperature and pressure.

 a.	The two f	flasks	must	contain	an	equal	number	of	molecules.	True
	or False?									

٦.	The two samples must have equal masses. True or Fals	67
 100	The two samples must have equal masses. The or rais	, C :

PROBLEMS Write the answer on the line to the left. Show all your work in the space provided.

4. Use the data in the table below to answer the following questions.

Formula	Molar mass (g/mol)
N ₂	28.02
CO	28.01
C ₂ H ₂	26.04
He	4.00
Ar .	39.95

(Assume all gases are at STP.)

	a .	Which gas	contains	the	most	molecule	s ir	1 a 2	5.0 L	sample?
--	------------	-----------	----------	-----	------	----------	------	-------	-------	---------

b. Which gas is the least dense?

_____ c. Which two gases have virtually the same density?

d. What is the density of N_2 measured at STP?

e. How many grams of H₂O are produced?

ъ. т			
Name	Date	Class	
Y COUNTY	 Laic	Ciass	

Gases

SE	CTION 4
design of Langue	RT ANSWER Answer the following questions in the space provided.
1.	List the following gases in order of increasing rate of effusion. (Assume all gases are at the same temperature and pressure.)
	(a) He (b) Xe (c) HCl (d) Cl ₂
2. 1	Explain your reasoning for the order of gases you chose in item 1 above. Refer to the kinetic-molecular theory to support your explanation and cite Graham's law of effusion.
=	
_	
_	
3	The two gases in the figure below are simultaneously injected into opposite ends of the tube. At which labeled point should they just begin to mix?
₂ S(g)	(a) (b) (c) SO
	State whether each example describes effusion or diffusion.
	a. As a puncture occurs, air moves out of a bicycle tire.
-	b. When ammonia is spilled on the floor, the house begins to smell li ammonia.

5. Describe what happens, in terms of diffusion, when a bottle of perfume is opened.

_ c. The smell of car exhaust pervades an emissions testing station.

ECTION 4 co	ntinued		
PROBLEMS provided.	Write the	an	nswer on the line to the left. Show all your work in the space
6	-	a.	The molar masses of He and of HCl are 4.00 g/mol and 36.46 g/mol, respectively. What is the ratio of the mass of He to the mass of HCl rounded to one decimal place?
		3.	
		. Ю.	Use your answer in part a to calculate the ratio of the average speed of He to the average speed of HCl.
		e.	If helium's average speed is 1200 m/s, what is the average speed of HCl?

Name Date Class	Name		Date	Class		
-----------------	------	--	------	-------	--	--

Gases

MIXED REVIEW

SHORT ANSWER Answer the following questions in the space provided.

1. Consider the following data table:

Approximate pressure (kPa)	Altitude above sea level (km)	
100	0 (sea level)	
50	5.5 (peak of Mt. Kilimanjaro)	
25	11 (jet cruising altitude)	
< 0.1	22 (ozone layer)	

- a. Explain briefly why the pressure decreases as the altitude increases.
- **b.** A few places on Earth are below sea level (the Dead Sea, for example). What would be true about the average atmospheric pressure there?
- **2.** Explain how the ideal gas law can be simplified to give Avogadro's law, expressed as $\frac{V}{n} = k$, when the pressure and temperature of a gas are held constant.

PROBLEMS Write the answer on the line to the left. Show all your work in the space provided.

- **3.** Convert a pressure of 0.400 atm to the following units:
- & _____a. torr
 - _____ b. Pa

Copyright © by Holi, Rinehart and Winston. All rights reserved.

Name		Date	Class			
MIXED REVIEW CO	ontinued		The state of the state			
4	A 250. mL sample og gas sample occupy a	A 250. mL sample of gas is collected at 57°C. What volume will the gas sample occupy at 25°C?				
		•				
. *						
5.	H ₂ reacts according to the ammonia gas:	following equation	a representing the synthesis of			
	N_2	$e(g) + 3H_2(g) \rightarrow 2$	NH-(0)			
	If 1 L of H ₂ is consumed w	What volume of am	nmonia will be produced at Gay-Lussac's law of combining			
			e e			
6	A 7.00 L sample of argon g gas is compressed to 1.25 L will be its new pressure?	as at 420. K exerts and the temperatu	s a pressure of 625 kPa. If the are is lowered to 350. K, what			
		•				
7	Chlorine in the upper atmos reaction can be represented	phere can destroy by the following ed	ozone molecules, O ₃ . The quation:			
	$\text{Cl}_2(g)$ +	$2O_3(g) \rightarrow 2ClO(g$	$(r) + 2O_2(g)$			
	How many liters of ozone ca of chlorine gas react with it?	in be destroyed at	220. K and 5.0 kPa if 200.0 g			
•	A gas of unknown mole	ar mass is observed	l to effuse through a small			
	Tour in the fourth fale c	HUSION THE OF BUILD	rogen. Estimate the molar of hydrogen to two significant			