**		
Name	Date	Close
	174tC	_ Class

States of Matter

SECTION 1

SHORT ANSWER Answer the following questions in the space provided.

٦.	Id	entify whether the descriptions below describe an ideal gas or a real gas.
2024		a. The gas will not condense because the molecules do not attract each other.
		b. Collisions between molecules are perfectly elastic.
	. 	c. Gas particles passing close to one another exert an attraction on each other.
Z.,	Th	ne formula for kinetic energy is $KE = \frac{1}{2} mv^2$.
	a.	As long as temperature is constant, what happens to the kinetic energy of the colliding particles during an elastic collision?
	b.	If two gases have the same temperature and share the same energy but have different molecular masses, which molecules will have the greater speed?
3.	Us	se the kinetic-molecular theory to explain each of the following phenomena:
		A strong-smelling gas released from a container in the middle of a room is soon detected in all areas of that room.
	, mes	
	b.	As a gas is heated, its rate of effusion through a small hole increases if all other factors remain constant.
4.	a.	List the following gases in order of rate of effusion, from lowest to highest. (Assume all gases are at the same temperature and pressure.)
		(a) He (b) Xe (c) HCl (d) Cl

SECTION 1 continued

b. Explain why you put the gases in the order above. Refer to the kinetic-molecular theory to support your explanation.

6. _____ The two gases in the figure below are simultaneously injected into opposite ends of the tube. The ends are then sealed. They should just begin to mix closest to which labeled point?

7. Explain the difference in the speed-distribution curves of a gas at the two temperatures shown in the figure below.

Name Date	Class
-----------	-------

States of Matter

S	CTION 2			
	ORT ANSWER Answer	the following a	eactions in the s	nace provided
	•			pace provided.
1.		ll the following pro	perties except	
	(a) relatively low(b) the ability to	•		(c) relative incompressibility.(d) the ability to change to a gas.
2.	a. Chemists distinguish be between these two type	etween intermolecu s of forces.	lar and intramolect	ular forces. Explain the difference
	Classify each of the follow	ving as intramolecu	lar or intermolecul	ar:
		b. hydrogen bon	ding in liquid wate	T
		c. the O—H cov	valent bond in meth	nanol, CH ₃ OH
		d. the bonds that	t cause gaseous Cl ₂	to become a liquid when cooled
3.	Explain the following prop	perties of liquids by	describing what is	occurring at the molecular level.
	a. A liquid takes the shap	e of its container b	ut does not expand	to fill its volume.
				The state of the s
	: 'syrin's			
	b. Polar liquids are slowe	r to evaporate than	nonpolar liquids.	

Nan	ne	Date	Class
SEC	TION 2 continued		
4.	Explain briefly why liquids tend to for size possible.	orm spherical droplets, decre	easing surface area to the smallest
		400	
- 5.	. Is freezing a chemical change or a p		ain your answer.
6	. Is evaporation a chemical or physical	al change? Briefly explain y	
•			
7	. What is the relationship between va	porization and evaporation?	

Class .	
	Class .

States of Matter

SECTION 3

SHORT ANSWER Answer the following questions in the space provided.

pass.	Match description on the right to the c	orrect crystal type on the left.
	ionic crystal	(a) has mobile electrons in the crystal
	covalent molecular crystal	(b) is hard, brittle, and nonconducting
	metallic crystal	(c) typically has the lowest melting point of the four crystal types
	covalent network crystal	(d) has strong covalent bonds between neighboring atoms
2.	For each of the four types of solids, gipage 340 of the text.	ve a specific example other than one listed in Table 1 on
3.	pool. What does this tell you about the molten lead?	a pool of molten lead. The chunk sinks to the bottom of the density of the solid lead compared with the density of the
4	Answer amorphous solid or crystalling	ne solid to the following questions:
	a. Which	th is less compressible?
	b. Whice	ch has a more clearly defined shape?
		ch is sometimes described as a supercooled liquid?
	3 XX71.:	sh has a lass clearly defined melting point?

ne	Date	Class
TION 3 continued		
		, de la facial
. Explain the following properties of so	olids by describing what is	occurring at the atomic level.
a. Metallic solids conduct electricity	well, but covalent networ	k solids do not.
	•	
b. The volume of a solid changes of		
b. The volume of a sond changes of		
		SAME :
c. Amorphous solids do not have a		
	The second secon	
d. Ionic crystals are much more br		-
G. Tome crystais are mast more		
	·	-
6. Experiments show that it takes 6.0 only about 1.1 kJ to melt 1 mol of intermolecular forces why it takes	methane. CH4, at its inclu	iig point. Explain in terms of
		•

	•	_	C11
Name	· ·	Date	Class
Name			

States of Matter

SECTION 4

SHORT ANSWE	Answer the	following	questions in	the space	provided.
SHOK! ARSVIC	E Aliswei liie	TOHOAAHIA	questions in	circ space	p. 0

- When a substance in a closed system undergoes a phase change and the system reaches equilibrium. (a) the two opposing changes occur at equal rates. (b) there are no more phase changes. (c) one phase change predominates. (d) the amount of substance in the two phases changes. 2. Match the following definitions on the right with the words on the left. (a) melting equilibrium (b) opposing changes occurring at equal rates in a closed _ volatile system (c) readily evaporated _ fusion (d) a change directly from a gas to a solid _ deposition 3. Match the process on the right with the change of state on the left. (a) melting solid to gas (b) condensation ___ liquid to gas (c) sublimation gas to liquid (d) vaporization ____ solid to liquid 4. Refer to the phase diagram for water in Figure 16 on page 347 of the text to answer the following questions: a. What point represents the conditions under which all three phases can coexist? _ b. What point represents a temperature above which only the vapor phase exists? c. Based on the diagram, as the pressure on the water system increases, what happens to the melting point of ice?
 - d. What happens when water is at point A on the curve and the temperature increases while the pressure is held constant?

SECTION 4 continued

5. Use this general equilibrium equation to answer the following questions:

- a. If the forward reaction is favored, will the concentration of reactants increase, decrease, or stay the same?
 - b. If extra product is introduced, which reaction will be favored?
 - c. If the temperature of the system decreases, which reaction will be favored?
- 6. Refer to the graph below to answer the following questions:

 a.	What is	the	normal	boiling	point	of	CCl ₄	?
 440	AA TYPEF TIS	uiv	ATOLITIES.	0	1 ~~~~	~ -		

 b.	What would be the boiling point of water if the air pressure over
	the liquid were reduced to 60 kPa?

c	What must the air pressure over CCl ₄ be for it to boil at 50°C?	
U.	What must the an pressure over ect4 of for it to som at 50 C.	

Although water has a lower molar mass than CCl ₄ , it has a lower vapor pressure when measured
at the same temperature. What makes water vapor less volatile than CCl ₄ ?

3

States of Matter

SECTION 5

SHORT ANSWER Answer the following questions in the space provided.

1.	Indicate whether each of the following is a physical or chemical property of water.
	a. The density of ice is less than the density of liquid water.
	b. A water molecule contains one atom of oxygen and two atoms of hydrogen.
	c. There are strong hydrogen bonds between water molecules.
	d. Ice consists of water molecules in a hexagonal arrangement.
2.	Compare a polar water molecule with a less-polar molecule, such as formaldehyde, CH_2O . Both are liquids at room temperature and 1 atm pressure.
	a. Which liquid should have the higher boiling point?
	b. Which liquid is more volatile?
	e. Which liquid has a higher surface tension?
	d. In which liquid is NaCl, an ionic crystal, likely to be more soluble?
3.	Describe hydrogen bonding as it occurs in water in terms of the location of the bond, the particles involved, the strength of the bond, and the effects this type of bonding has on physical properties.
	•

Name		Date	Class	
SECTION 5 continued				
PROBLEMS Write t	ROBLEMS Write the answer on the line to the left. Show all your work in the space			
4. The molar enthalpy ice is 6.009 kJ/mol	y of vaporization of wa . The molar mass of w	ater is 40.79 kJ/mol, an rater is 18.02 g/mol.	d the molar enthalpy of fusi	ion of
	a. How much ene	rgy is absorbed when 3	79 kJ/mol, and the molar enthalpy of fusion of .02 g/mol. corbed when 30.3 g of liquid water boils? countered is the calorie (4.18 J = 1 calorie). nalpy of fusion of ice in calories per gram. Calculate the amount of energy needed to melt; molar enthalpy of fusion of ice = 6.009 kJ/mol. e ice cube. moles of H ₂ O present in the sample.	
· · · · · · · · · · · · · · · · · · ·	b. An energy unit Determine the r	often encountered is the	e calorie (4.18 J = 1 calorie) n of ice in calories per gram).
the ice cube. (Dens	ity of ice at $0.^{\circ}C = 0.9$	16.0 cm ³ . Calculate the 917 g/mL; molar enthal	amount of energy needed to py of fusion of ice $= 6.009$	o melt kJ/mol
	a. Determine the r	nass of the ice cube.	•	
	b. Determine the n	umber of moles of H ₂ C	present in the sample.	
	_ c. Determine the n cube.	umber of kilojoules of	energy needed to melt the ic	е

Name	Date	Class	

States of Matter

MIXED REVIEW

HORT ANSWER	Answer the following	questions in	the space	provided.

- 1. ____ The average speed of a gas molecule is most directly related to the
 - (a) polarity of the molecule.
 - (b) pressure of the gas.
 - (c) temperature of the gas.
 - (d) number of moles in the sample.

2.	Us	e the kinetic-molecular theory to explain the following phenomena:
	a.	When 1 mol of a real gas is condensed to a liquid, the volume shrinks by a factor of about 1000.
•		
	b.	When a gas in a rigid container is warmed, the pressure on the walls of the container increases

- **3.** Which of the following statements about liquids and gases is *not* true?
 - (a) Molecules in a liquid are much more closely packed than molecules in a gas.
 - (b) Molecules in a liquid can vibrate and rotate, but they are bound in fixed positions.
 - (c) Liquids are much more difficult to compress into a smaller volume than are gases.
 - (d) Liquids diffuse more slowly than gases.
- **4.** Answer *solid* or *liquid* to the following questions:

a.	Which is less compressible?
b.	Which is quicker to diffuse into neighboring media?
c.	Which has a definite volume and shape?

d. Which has molecules that are rotating or vibrating primarily in place?

Momo			Ş.
Name	Date	Class	

MIXED REVIEW continued

5.	Explain why almost all solids are dense	r than their	liquid state	es by d	lescribing	what is	: occurrix	ao at
	the molecular level.		1	, ,		, , , , , , , , , , , , , , , , , , ,	occurin	18 ai

6. A general equilibrium equation for boiling is

Indicate whether the forward or reverse reaction is favored in each of the following cases:

- __ a. The temperature of the system is increased.
- b. More molecules of the vapor are added to the system.
- c. The pressure on the system is increased.
- Freon-11, CCl₃F has been commonly used in air conditioners. It has a molar mass of 137.35 g/mol and its enthalpy of vaporization is 24.8 kJ/mol at its normal boiling point of 24°C. Ideally how much energy in the form of heat is removed from a room by an air conditioner that evaporates 1.00 kg of freon-11?
- **8.** Use the data table below to answer the following:

Moiar mass (g/moi)	Enthalpy vaporization (kJ/mol)	Normal boiling point (°C)	Critical temperature (°C)
4	0.08	-269	-268
20	1.8	-246	-229
40	6.5	-186	-122
131	12.6	-107	+17
18	40.8	+100	+374
20	25.2	+20	+188
16	8.9	-161	-82
30	15.7	-89	+32
	(g/mol) 4 20 40 131 18 20 16	Molar mass (g/mol) vaporization (kJ/mol) 4 0.08 20 1.8 40 6.5 131 12.6 18 40.8 20 25.2 16 8.9	Molar mass (g/mol) vaporization (kJ/mol) Normal boiling point (°C) 4 0.08 -269 20 1.8 -246 40 6.5 -186 131 12.6 -107 18 40.8 +100 20 25.2 +20 16 8.9 -161

- a. Among *nonpolar* liquids, those with higher molar masses tend to have normal boiling points that are (higher, lower, or about the same).
 - **b.** Among compounds of approximately the same molar mass, those with greater polarities tend to have enthalpies of vaporization that are (higher, lower, or about the same).
- c. Which is the only noble gas listed that is stable as a liquid at 0°C? Explain your answer using the concept of critical temperature.